Sampling design to estimate the quantity of defective lots caused by maladjustment in semiautomatic industrial finishing equipment in different production lines in a metallic die cut process

Authors

DOI:

https://doi.org/10.36958/sep.v5i2.100

Keywords:

sampling, two-stage, cluster, maintenance, emancipation, autonomy, research, training process, comprehensiveness.

Abstract

PROBLEM: in industrial equipments, derived from the proper use and utilization of the materials that compose them, deviations from the expected specifications of the manufactured product are obtained as a result, so it is convenient to add a statistically valid method for the estimation of failed batches. OBJECTIVE: the estimation of the number of failed batches obtained in equipment with damage derived from maladjustment is required for the creation of programs that allow projecting predictive maintenance. METHOD: by adopting techniques that allow anticipating the maladjustments that occur in the machines, these problems could be prevented through the acquisition of instruments specifically designed for monitoring. That is why a two-stage demonstration design by conglomerates was carried out, which demonstrated the estimated total behavior in the equipment of the different production lines. RESULTS: considering the magnitude of the size of the defective batches, an experimental sampling design was developed in order to obtain early information regarding the estimation of failed batches. CONCLUSIONS: it was obtained at low cost, a statistical estimation tool for the evaluation of batches considered defective, through the design of a sampling tool in two phases.

Downloads

Download data is not yet available.

Author Biography

Carlos Alberto Ríos Calderón, Universidad Internacional de La Rioja

He is an Industrial Engineer and Mechanical Engineer, Master in Applied Statistics, from the University of San Carlos de Guatemala. Master in Integrated Management Systems, from the International University of La Rioja. More than ten years of experience as a process engineer, management and implementation of quality management systems, statistical process control and continuous improvement programs in industry.

References

Besterfield, D. (1994). Control de calidad. México: 4ta. edición. Pearson Prentince-Hall. Disponible en: https://biblos.usac.edu.gt/library/index.php?title=12347

Gutiérrez, H. y de la Vara, R. (2013). Control estadístico de la calidad y Seis Sigma. México: 3ra. edición. McGraw Hill Editores. Disponible en: https://biblos.usac.edu.gt/library/index.php?title=577518

Klinger, R. Olaya, J. Marmolejo, L. Madera C. (2009). Plan de muestreo para la cuantificación de residuos sólidos residenciales generados en las zonas urbanas de ciudades de tamaño intermedio. Revista Facultad de Ingeniería Universidad de Antioquia. Volumen 1 Abr/Jun 2009. (No.48). pp.76-86. Disponible en: http://www.scielo.org.co/pdf/rfiua/n48/n48a08.pdf

Scheaffer, R. Mendelhall, W. Ott, L. (1987). Elementos de Muestreo. México: Tercera edición. Grupo editorial Iberoamérica. Disponible en https://biblos.usac.edu.gt/library/index.php?title=9409

Walpole, R., Myers, R., Myers, y S. Yeng, K. (2012). Probabilidad y estadística para ingeniería y ciencias. México: 9na. edición. Pearson Prentince-Hall. Disponible en: https://biblos.usac.edu.gt/library/index.php?title=577456

Published

04-11-2022

How to Cite

Ríos Calderón, C. A. (2022). Sampling design to estimate the quantity of defective lots caused by maladjustment in semiautomatic industrial finishing equipment in different production lines in a metallic die cut process. Revista Cientí­fica Del Sistema De Estudios De Postgrado De La Universidad De San Carlos De Guatemala, 5(2), 77–86. https://doi.org/10.36958/sep.v5i2.100

Issue

Section

Scientific articles